Part Number Hot Search : 
70ZA1 M67749 60165K ZRT040C2 PE2001 LT8610 LS4148L1 SY58033U
Product Description
Full Text Search
 

To Download MAX19997A11 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the max19997a dual downconversion mixer is a versa- tile, highly integrated diversity downconverter that pro- vides high linearity and low noise figure for a multitude of 1800mhz to 2900mhz base-station applications. the max19997a fully supports both low- and high-side lo injection architectures for the 2300mhz to 2900mhz wimax, lte, wcs, and mmds bands, providing 8.7db gain, +24dbm input ip3, and 10.3db nf in the low-side configuration, and 8.7db gain, +24dbm input ip3, and 10.4db nf in the high-side configuration. high- side lo injection architectures can be further extended down to 1800mhz with the addition of one tuning ele- ment (a shunt inductor) on each rf port. the device integrates baluns in the rf and lo ports, an lo buffer, two double-balanced mixers, and a pair of differential if output amplifiers. the max19997a requires a typical lo drive of 0dbm and a supply cur- rent guaranteed below 420ma to achieve the targeted linearity performance. the max19997a is available in a compact 6mm x 6mm, 36-pin thin qfn lead-free package with an exposed pad. electrical performance is guaranteed over the extended temperature range, from t c = -40? to +85?. applications 2.3ghz wcs base stations 2.5ghz wimax and lte base stations 2.7ghz mmds base stations umts/wcdma and cdma2000 3g base stations pcs1900 and edge base stations phs/pas base stations fixed broadband wireless access wireless local loop private mobile radios military systems features ? 1800mhz to 2900mhz rf frequency range ? 1950mhz to 3400mhz lo frequency range ? 50mhz to 550mhz if frequency range ? supports both low-side and high-side lo injection ? 8.7db conversion gain ? +24dbm input ip3 ? 10.3db noise figure ? +11.3dbm input 1db compression point ? 70dbc typical 2 x 2 spurious rejection at p rf = -10dbm ? dual channels ideal for diversity receiver applications ? integrated lo buffer ? integrated lo and rf baluns for single-ended inputs ? low -3dbm to +3dbm lo drive ? pin compatible with the max19999 3000mhz to 4000mhz mixer ? pin similar to the max9995/max9995a and max19995/max19995a 1700mhz to 2200mhz mixers and the max9985/max9985a and max19985/max19985a 700mhz to 1000mhz mixers ? 42db channel-to-channel isolation ? single +5.0v or +3.3v supply ? external current-setting resistors provide option for operating device in reduced-power/reduced- performance mode max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ________________________________________________________________ maxim integrated products 1 ordering information 19-4288; rev 2; 2/11 for pricing, delivery, and ordering information, please contact maxim direct at 1-888-629-4642, or visit maxim? website at www.maxim-ic.com. part temp range pin-package max19997aetx+ -40? to +85? 36 thin qfn-ep* max19997aetx+t -40? to +85? 36 thin qfn-ep* + denotes a lead(pb)-free/rohs-compliant package. *ep = exposed pad. t = tape and reel. pin configuration/functional block diagram appears at end of data sheet. wimax is a trademark of wimax forum. cdma2000 is a registered trademark of telecommunications industry association.
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 2 _______________________________________________________________________________________ absolute maximum ratings +5.0v supply dc electrical characteristics ( typical application circuit optimized for the standard rf band (see table 1) , no input rf or lo signals applied, v cc = +4.75v to +5.25v, t c = -40? to +85?. typical values are at v cc = +5.0v, t c = +25?, unless otherwise noted. r1, r4 = 750 , r2, r5 = 698 .) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress rating s only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. v cc to gnd ...........................................................-0.3v to +5.5v rf_, lo to gnd.....................................................-0.3v to +0.3v ifm_, ifd_, ifm_set, ifd_set, lo_adj_m, lo_adj_d to gnd.................................-0.3v to (v cc + 0.3v) rf_, lo input power ......................................................+15dbm rf_, lo current (rf and lo is dc shorted to gnd through balun)................................... ...50ma continuous power dissipation (note 1) ..............................8.7w operating case temperature range (note 4) ...................................................t c = -40? to +85? junction temperature ......................................................+150? storage temperature range .............................-65? to +150? lead temperature (soldering, 10s) .................................+300? soldering temperature (reflow) .......................................+260? parameter symbol conditions min typ max units supply voltage v cc 3.0 3.3 3.6 v supply current i cc total supply current, v cc = +3.3v 279 310 ma +3.3v supply dc electrical characteristics ( typical application circuit optimized for the standard rf band (see table 1) , no input rf or lo signals applied, v cc = +3.0v to +3.6v, t c = -40? to +85?. typical values are at v cc = +3.3v, t c = +25?, unless otherwise noted. r1, r4 = 1.1k , r2, r5 = 845 .) parameter symbol conditions min typ max units supply voltage v cc 4.75 5.00 5.25 v supply current i cc total supply current 388 420 ma note 1: based on junction temperature t j = t c + ( jc x v cc x i cc ). this formula can be used when the temperature of the exposed pad is known while the device is soldered down to a pcb. see the applications information section for details. the junction temperature must not exceed +150?. note 2: junction temperature t j = t a + ( ja x v cc x i cc ). this formula can be used when the ambient temperature of the pcb is known. the junction temperature must not exceed +150?. note 3: package thermal resistances were obtained using the method described in jedec specification jesd51-7, using a four- layer board. for detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial . note 4: t c is the temperature on the exposed pad of the package. t a is the ambient temperature of the device and pcb. package thermal characteristics junction-to-ambient thermal resistance ( ja ) (notes 2, 3)...................................................................38?/w junction-to-case thermal resistance ( jc ) (notes 1, 3)..................................................................7.4?/w
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer _______________________________________________________________________________________ 3 recommended ac operating conditions parameter symbol conditions min typ max units rf frequency without external tuning f rf (note 5) 2400 2900 mhz rf frequency with external tuning f rf s ee tab l e 2 for an outl i ne of tuni ng el em ents op ti m i zed for 1950m h z op er ati on; op ti m i zati on at other fr eq uenci es w i thi n the 1800m h z to 2400m h z r ang e can b e achi eved w i th different component values; contact the factory for details 1800 2400 mhz lo frequency f lo (notes 5, 6) 1950 3400 mhz using mini-circuits tc4-1w-17 4:1 transformer as defined in the typical application circuit , if matching components affect the if frequency range (notes 5, 6) 100 550 if frequency f if using alternative mini-circuits tc4-1w-7a 4:1 transformer, if matching components affect the if frequency range (notes 5, 6) 50 250 mhz lo drive level p lo -3 +3 dbm parameter symbol conditions min typ max units conversion gain g c f rf = 2400mhz to 2900mhz, t c = +25? (notes 8, 9, 10) 8.1 8.7 9.3 db f rf = 2305mhz to 2360mhz 0.15 f rf = 2500mhz to 2570mhz 0.15 f rf = 2570mhz to 2620mhz 0.1 f rf = 2500mhz to 2690mhz 0.15 conversion gain flatness f rf = 2700mhz to 2900mhz 0.15 db gain variation over temperature tc cg f rf = 2300mhz to 2900mhz, t c = -40? to +85? -0.01 db/? input compression point ip 1db (notes 8, 9, 11) 9.6 11.3 dbm f rf1 - f rf2 = 1mhz, p rf = -5dbm per tone (notes 8, 9) 22.0 24 third-order input intercept point iip3 f rf = 2600mhz, f rf1 - f rf2 = 1mhz, p rf = -5dbm per tone, t c = +25? (notes 8, 9) 22.5 24 dbm thi r d - o r d er inp ut inter cep t p oi nt v ar i ati on over tem p er atur e f rf1 - f rf2 = 1mhz, t c = -40? to +85? ?.3 dbm +5.0v supply, high-side lo injection ac electrical characteristics ( typical application circuit optimized for the standard rf band (see table 1) ,v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 2300mhz to 2900mhz, f lo = 2650mhz to 3250mhz, f if = 350mhz, f rf < f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2950mhz, f if = 350mhz, t c = +25?, unless otherwise noted.) (note 7)
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 4 _______________________________________________________________________________________ parameter symbol conditions min typ max units single sideband, no blockers present f r f = 2400m h z to 2900m h z ( n ote 6, 8, 10) 10.4 12.5 noise figure nf ssb single sideband, no blockers present, f r f = 2400m h z to 2900m h z , t c = +25? (note 6, 8, 10) 10.4 11.4 db noise figure temperature coefficient tc nf single sideband, no blockers present, t c = -40? to +85? 0.018 db/? noise figure under blocking conditions nf b f blocker = 2412mhz, p blocker = 8dbm, f rf = 2600mhz, f lo = 2950mhz, p lo = 0dbm, v c c = + 5.0v , t c = + 25c ( notes 8, 12) 22.5 25 db f rf = 2600mhz, f lo = 2950mhz, p rf = -10dbm, f spur = f lo - 175mhz (note 8) 62 69 2lo - 2rf spur 2 x 2 f rf = 2600mhz, f lo = 2950mhz, p rf = -5dbm, f spur = f lo - 175mhz (notes 8, 9) 57 64 dbc f rf = 2600mhz, f lo = 2950mhz, p rf = -10dbm, f spur = f lo - 116.67mhz, t c = +25c (note 8) 73 84 3lo - 3rf spur 3 x 3 f rf = 2600mhz, f lo = 2950mhz, p rf = -5dbm, f spur = f lo - 116.67mhz, t c = +25? (notes 8, 9) 63 74 dbc rf input return loss lo on and if terminated into a matched impedance 14 db lo input return loss rf and if terminated into a matched impedance 13 db if output impedance z if nominal differential impedance at the ic? if outputs 200 if output return loss rf terminated into 50 , lo driven by 50 source, if transformed to 50 using external components shown in the typical application circuit 21 db +5.0v supply, high-side lo injection ac electrical characteristics (continued) ( typical application circuit optimized for the standard rf band (see table 1) ,v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 2300mhz to 2900mhz, f lo = 2650mhz to 3250mhz, f if = 350mhz, f rf < f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2950mhz, f if = 350mhz, t c = +25?, unless otherwise noted.) (note 7)
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer _______________________________________________________________________________________ 5 parameter symbol conditions min typ max units conversion gain g c f rf = 2400mhz to 2900mhz, t c = +25? (notes 8, 9, 10) 8.1 8.7 9.3 db f rf = 2305mhz to 2360mhz 0.2 f rf = 2500mhz to 2570mhz 0.15 f rf = 2570mhz to 2620mhz 0.2 f rf = 2500mhz to 2690mhz 0.25 conversion gain flatness f rf = 2700mhz to 2900mhz 0.25 db gain variation over temperature tc cg f rf = 2300mhz to 2900mhz, t c = -40? to +85? -0.01 db/? input compression point ip 1db (notes 6, 8, 11) 9.6 11.3 dbm f rf1 - f rf2 = 1mhz, p rf = -5dbm per tone (notes 8, 9) 21.6 23 dbm third-order input intercept point iip3 f rf = 2600mhz, f rf1 - f rf2 = 1mhz, p rf = -5dbm per tone, t c = +25? (notes 8, 9) 22 23.8 dbm thi r d - o r d er inp ut inter cep t p oi nt v ar i ati on over tem p er atur e f rf1 - f rf2 = 1mhz, t c = -40? to +85? ?.3 dbm parameter symbol conditions min typ max units rf-to-if isolation 25 db lo leakage at rf port (notes 8, 9) -28 dbm 2lo leakage at rf port -33 dbm lo leakage at if port -18.5 dbm channel isolation rfmain (rfdiv) converted power measured at ifdiv (ifmain) relative to ifmain (ifdiv), all unused ports terminated to 50 38.5 43 db +5.0v supply, high-side lo injection ac electrical characteristics (continued) ( typical application circuit optimized for the standard rf band (see table 1) ,v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 2300mhz to 2900mhz, f lo = 2650mhz to 3250mhz, f if = 350mhz, f rf < f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2950mhz, f if = 350mhz, t c = +25?, unless otherwise noted.) (note 7) +5.0v supply, low-side lo injection ac electrical characteristics ( typical application circuit optimized for the standard rf band (see table 1) , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 2300mhz to 2900mhz, f lo = 1950mhz to 2550mhz, f if = 350mhz, f rf > f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2250mhz, f if = 350mhz, t c = +25?, unless otherwise noted.) (note 7)
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 6 _______________________________________________________________________________________ parameter symbol conditions min typ max units single sideband, no blockers present f rf = 2400mhz to 2900mhz (notes 6, 8) 10.3 13.0 noise figure nf ssb single sideband, no blockers present, f rf = 2400mhz to 2900mhz, t c = +25? (notes 6, 8) 10.3 11.3 db noise figure temperature coefficient tc nf single sideband, no blockers present, t c = -40? to +85? 0.018 db/? noise figure under blocking conditions nf b f blocker = 2793mhz, p blocker = 8dbm, f rf = 2600mhz, f lo = 2250mhz, p lo = 0dbm, v cc = + 5.0v , t c = +25c (notes 6, 8, 12) 22 25 db f rf = 2600mhz, f lo = 2250mhz, p rf = -10dbm, f spur = f lo + 175mhz, t c = +25? (note 8) 62 67 2rf-2lo spur 2 x 2 f rf = 2600mhz, f lo = 2250mhz, p rf = -5dbm, f spur = f lo + 175mhz, t c = +25? (notes 8, 9) 57 62 dbc f rf = 2600mhz, f lo = 2250mhz, p rf = -10dbm, f spur = f lo + 116.67mhz, t c = +25c (note 8) 78 83 3rf-3lo spur 3 x 3 f rf = 2600mhz, f lo = 2250mhz, p rf = -5dbm, f spur = f lo + 116.67mhz, t c = +25? (notes 8, 9) 68 73 dbc rf input return loss lo on and if terminated into a matched impedance 16 db lo input return loss rf and if terminated into a matched impedance 11.5 db if output impedance z if nominal differential impedance at the ic? if outputs 200 if output return loss rf terminated into 50 , lo driven by 50 source, if transformed to 50 using external components shown in the typical application circuit 20 db +5.0v supply, low-side lo injection ac electrical characteristics (continued) ( typical application circuit optimized for the standard rf band (see table 1) , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 2300mhz to 2900mhz, f lo = 1950mhz to 2550mhz, f if = 350mhz, f rf > f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2250mhz, f if = 350mhz, t c = +25?, unless otherwise noted.) (note 7)
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer _______________________________________________________________________________________ 7 parameter symbol conditions min typ max units rf-to-if isolation 23.5 db lo leakage at rf port (notes 8, 9) -31 -24 dbm 2lo leakage at rf port -27 dbm lo leakage at if port -9.6 dbm channel isolation rfmain (rfdiv) converted power measured at ifdiv (ifmain) relative to ifmain (ifdiv), all unused ports terminated to 50 (notes 8, 9) 38.5 42 db +3.3v supply, low-side lo injection ac electrical characteristics ( typical application circuit optimized for the standard rf band (see table 1) . typical values are at v cc = +3.3v, p rf = -5dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2250mhz, f if = 350mhz, t c = +25?, unless otherwise noted.) (note 7) parameter symbol conditions min typ max units conversion gain g c (note 9) 8.5 db f rf = 2305mhz to 2360mhz 0.2 f rf = 2500mhz to 2570mhz 0.15 f rf = 2570mhz to 2620mhz 0.15 f rf = 2500mhz to 2690mhz 0.25 conversion gain flatness f rf = 2700mhz to 2900mhz 0.15 db gain variation over temperature tc cg f rf = 2300mhz to 2900mhz, t c = -40? to +85? -0.01 db/? input compression point ip 1db 7.7 dbm thi r d - o r d er inp ut inter cep t p oi nt iip3 f rf1 - f rf2 = 1mhz, p rf = -5dbm per tone 19.7 dbm third-order input intercept variation over temperature f rf1 - f rf2 = 1mhz, t c = -40? to +85? ?.5 dbm noise figure nf ssb single sideband, no blockers present 9.7 db noise figure temperature coefficient tc nf single sideband, no blockers present, t c = -40? to +85? 0.018 db/? +5.0v supply, low-side lo injection ac electrical characteristics (continued) ( typical application circuit optimized for the standard rf band (see table 1) , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 2300mhz to 2900mhz, f lo = 1950mhz to 2550mhz, f if = 350mhz, f rf > f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2250mhz, f if = 350mhz, t c = +25?, unless otherwise noted.) (note 7)
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 8 _______________________________________________________________________________________ +3.3v supply, low-side lo injection ac electrical characteristics (continued) ( typical application circuit optimized for the standard rf band (see table 1) . typical values are at v cc = +3.3v, p rf = -5dbm, p lo = 0dbm, f rf = 2600mhz, f lo = 2250mhz, f if = 350mhz, t c = +25?, unless otherwise noted.) (note 7) parameter symbol conditions min typ max units p rf = -10dbm, f spur = f lo + 175mhz 74 2rf-2lo spur 2 x 2 p rf = -5dbm, f spur = f lo + 175mhz 69 dbc p rf = -10dbm, f spur = f lo + 116.67mhz 74 3rf-3lo spur 3 x 3 p rf = -5dbm, f spur = f lo + 116.67mhz 64 dbc rf input return loss lo on and if terminated into a matched impedance 16 db lo input return loss rf and if terminated into a matched impedance 11 db if output impedance z if nominal differential impedance at the ic? if outputs 200 if output return loss rf terminated into 50 , lo driven by 50 source, if transformed to 50 using external components shown in the typical application circuit 26 db rf-to-if isolation 25 db lo leakage at rf port -36 dbm 2lo leakage at rf port -31 dbm lo leakage at if port -13.5 dbm channel isolation rfmain (rfdiv) converted power measured at ifdiv (ifmain) relative to ifmain (ifdiv), all unused ports terminated to 50 42 db note 5: operation outside this range is possible, but with degraded performance of some parameters. see the typical operating characteristics . note 6: not production tested. note 7: all limits reflect losses of external components, including a 0.8db loss at f if = 350mhz due to the 4:1 impedance trans- former. output measurements taken at the if outputs of typical application circuit . note 8: guaranteed by design and characterization. note 9: 100% production tested for functional performance. note 10: rf frequencies below 2400mhz require external rf tuning similar to components listed in table 2. note 11: maximum reliable continuous input power applied to the rf or if port of this device is +12dbm from a 50 source. note 12: measured with external lo source noise filtered so the noise floor is -174dbm/hz. this specification reflects the effects of all snr degradations in the mixer, including the lo noise as defined in application note 2021: specifications and measurement of local oscillator noise in integrated circuit base station mixers .
typical operating characteristics ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is high-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer _______________________________________________________________________________________ 9 conversion gain vs. rf frequency (lo > rf, standard rf band) max19997a toc01 rf frequency (mhz) conversion gain (db) 2800 2600 2400 7 8 9 10 11 6 2200 3000 t c = -30 c t c = +25 c t c = +85 c conversion gain vs. rf frequency (lo > rf, standard rf band) max19997a toc02 rf frequency (mhz) conversion gain (db) 2800 2600 2400 7 8 9 10 11 6 2200 3000 p lo = -3dbm, 0dbm, +3dbm conversion gain vs. rf frequency (lo > rf, standard rf band) max19997a toc03 rf frequency (mhz) conversion gain (db) 2800 2600 2400 7 8 9 10 11 6 2200 3000 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency (lo > rf, standard rf band) max19997a toc04 input ip3 (dbm) 23 24 25 26 22 rf frequency (mhz) 2800 2600 2400 2200 3000 t c = -30 c p rf = -5dbm/tone t c = +25 c t c = +85 c input ip3 vs. rf frequency (lo > rf, standard rf band) max19997a toc05 input ip3 (dbm) 23 24 25 26 22 rf frequency (mhz) 2800 2600 2400 2200 3000 p rf = -5dbm/tone p lo = -3dbm, 0dbm, +3dbm input ip3 vs. rf frequency (lo > rf, standard rf band) max19997a toc06 input ip3 (dbm) 23 24 25 26 22 rf frequency (mhz) 2800 2600 2400 2200 3000 p rf = -5dbm/tone v cc = 5.25v v cc = 5.0v v cc = 4.75v noise figure vs. rf frequency (lo > rf, standard rf band) max19997a toc07 noise figure (db) 8 9 10 11 12 13 7 rf frequency (mhz) 2800 2600 2400 2200 3000 t c = -30 c t c = +25 c t c = +85 c noise figure vs. rf frequency (lo > rf, standard rf band) max19997a toc08 noise figure (db) 8 9 10 11 12 13 7 rf frequency (mhz) 2800 2600 2400 2200 3000 p lo = -3dbm, 0dbm, +3dbm noise figure vs. rf frequency (lo > rf, standard rf band) max19997a toc09 noise figure (db) 8 9 10 11 12 13 7 rf frequency (mhz) 2800 2600 2400 2200 3000 v cc = 4.75v, 5.0v, 5.25v
typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is high-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 10 ______________________________________________________________________________________ 2lo - 2rf response vs. rf frequency (lo > rf, standard rf band) max19997a toc10 2lo - 2rf response (dbc) 60 70 80 50 rf frequency (mhz) 2800 2600 2400 2200 3000 t c = -30 c p rf = -5dbm t c = +25 c t c = +85 c 2lo - 2rf response vs. rf frequency (lo > rf, standard rf band) max19997a toc11 2lo - 2rf response (dbc) 60 70 80 50 rf frequency (mhz) 2800 2600 2400 2200 3000 p lo = +3dbm p rf = -5dbm p lo = 0dbm p lo = -3dbm 2lo - 2rf response vs. rf frequency (lo > rf, standard rf band) max19997a toc12 2lo - 2rf response (dbc) 60 70 80 50 rf frequency (mhz) 2800 2600 2400 2200 3000 v cc = 4.75v, 5.0v, 5.25v p rf = -5dbm 3lo - 3rf response vs. rf frequency (lo > rf, standard rf band) max19997a toc13 3lo - 3rf response (dbc) 65 75 85 95 55 rf frequency (mhz) 2800 2600 2400 2200 3000 t c = -30 c t c = +25 c, +85 c p rf = -5dbm 3lo - 3rf response vs. rf frequency (lo > rf, standard rf band) max19997a toc14 3lo - 3rf response (dbc) 65 75 85 95 55 rf frequency (mhz) 2800 2600 2400 2200 3000 p lo = -3dbm, 0dbm, +3dbm p rf = -5dbm 3lo - 3rf response vs. rf frequency (lo > rf, standard rf band) max19997a toc15 3lo - 3rf response (dbc) 65 75 85 95 55 rf frequency (mhz) 2800 2600 2400 2200 3000 v cc = 4.75v, 5.0v, 5.25v p rf = -5dbm input p 1db vs. rf frequency (lo > rf, standard rf band) max19997a toc16 input p 1db (dbm) 10 11 12 13 9 rf frequency (mhz) 2800 2600 2400 2200 3000 t c = -30 c t c = +25 c t c = +85 c input p 1db vs. rf frequency (lo > rf, standard rf band) max19997a toc17 input p 1db (dbm) 10 11 12 13 9 rf frequency (mhz) 2800 2600 2400 2200 3000 p lo = -3dbm, 0dbm, +3dbm input p 1db vs. rf frequency (lo > rf, standard rf band) max19997a toc18 input p 1db (dbm) 10 11 12 13 9 rf frequency (mhz) 2800 2600 2400 2200 3000 v cc = 4.75v v cc = 5.25v v cc = 5.0v
typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is high-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 11 channel isolation vs. rf frequency (lo > rf, standard rf band) max19997a toc19 channel isolation (db) 35 40 45 50 55 60 30 rf frequency (mhz) 2800 2600 2400 2200 3000 t c = -30 c, +25 c, +85 c channel isolation vs. rf frequency (lo > rf, standard rf band) max19997a toc20 channel isolation (db) 35 40 45 50 55 60 30 rf frequency (mhz) 2800 2600 2400 2200 3000 p lo = -3dbm, 0dbm, +3dbm channel isolation vs. rf frequency (lo > rf, standard rf band) max19997a toc21 channel isolation (db) 35 40 45 50 55 60 30 rf frequency (mhz) 2800 2600 2400 2200 3000 v cc = 4.75v, 5.0v, 5.25v lo leakage at if port vs. lo frequenc y (lo > rf, standard rf band) max19997a toc22 lo leakage at if port (dbm) -30 -20 -10 0 -40 lo frequency (mhz) 3150 2950 2750 2550 3350 t c = -30 c t c = +25 c, +85 c lo leakage at if port vs. lo frequenc y (lo > rf, standard rf band) max19997a toc23 lo leakage at if port (dbm) -30 -20 -10 0 -40 lo frequency (mhz) 3150 2950 2750 2550 3350 p lo = -3dbm, 0dbm, +3dbm lo leakage at if port vs. lo frequenc y (lo > rf, standard rf band) max19997a toc24 lo leakage at if port (dbm) -30 -20 -10 0 -40 lo frequency (mhz) 3150 2950 2750 2550 3350 v cc = 4.75v, 5.0v, 5.25v rf-to-if isolation vs. rf frequency (lo > rf, standard rf band) max19997a toc25 rf-to-if isolation (db) 20 30 40 10 rf frequency (mhz) 2800 2600 2400 2200 3000 t c = -30 c t c = +25 c t c = +85 c rf-to-if isolation vs. rf frequency (lo > rf, standard rf band) max19997a toc26 rf-to-if isolation (db) 20 30 40 10 rf frequency (mhz) 2800 2600 2400 2200 3000 p lo = -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency (lo > rf, standard rf band) max19997a toc27 rf-to-if isolation (db) 20 30 40 10 rf frequency (mhz) 2800 2600 2400 2200 3000 v cc = 4.75v, 5.0v, 5.25v
typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is high-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 12 ______________________________________________________________________________________ lo leakage at rf port vs. lo frequency (lo > rf, standard rf band) max19997a toc28 lo frequency (mhz) lo leakage at rf port (dbm) 3180 2960 2740 2520 -40 -30 -20 -10 -50 2300 3400 t c = -30 c, +25 c, +85 c lo leakage at rf port vs. lo frequency (lo > rf, standard rf band) max19997a toc29 lo frequency (mhz) lo leakage at rf port (dbm) 3180 2960 2740 2520 -40 -30 -20 -10 -50 2300 3400 p lo = -3dbm, 0dbm, +3dbm lo leakage at rf port vs. lo frequency (lo > rf, standard rf band) max19997a toc30 lo frequency (mhz) lo leakage at rf port (dbm) 3180 2960 2740 2520 -40 -30 -20 -10 -50 2300 3400 v cc = 4.75v, 5.0v, 5.25v 2lo leakage at rf port vs. lo frequency (lo > rf, standard rf band) max19997a toc31 lo frequency (mhz) 2lo leakage at rf port (dbm) 3180 2960 2740 2520 -40 -30 -20 -10 -50 2300 3400 t c = -30 c, +25 c, +85 c 2lo leakage at rf port vs. lo frequency (lo > rf, standard rf band) max19997a toc32 lo frequency (mhz) 2lo leakage at rf port (dbm) 3180 2960 2740 2520 -40 -30 -20 -10 -50 2300 3400 p lo = -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequency (lo > rf, standard rf band) max19997a toc33 lo frequency (mhz) 2lo leakage at rf port (dbm) 3180 2960 2740 2520 -40 -30 -20 -10 -50 2300 3400 v cc = 4.75v, 5.0v, 5.25v
typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is high-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 13 lo port return loss vs. lo frequency (lo > rf, standard rf band) max19997a toc37 lo frequency (mhz) lo port return loss (db) 3150 2900 2650 2400 2150 20 15 10 5 0 25 1900 3400 p lo = +3dbm p lo = 0dbm p lo = -3dbm supply current vs. temperature (t c ) (lo > rf, standard rf band) max19997a toc38 temperature ( c) supply current (ma) 65 45 25 5 -15 360 370 380 390 400 350 -35 85 v cc = 5.25v v cc = 5.0v v cc = 4.75v rf port return loss vs. rf frequency (lo > rf, standard rf band) max19997a toc34 rf port return loss (db) 25 20 15 10 5 0 30 rf frequency (mhz) 2800 2600 2400 2200 3000 p lo = -3dbm, 0dbm, +3dbm f if = 350mhz if port return loss vs. if frequency (lo > rf, standard rf band) max19997a toc35 if frequency (mhz) if port return loss (db) 410 320 230 140 25 20 15 10 5 0 30 50 500 v cc = 4.75v, 5.0v, 5.25v f lo = 2600mhz if port return loss vs. if frequency (lo > rf, standard rf band) max19997a toc36 if frequency (mhz) if port return loss (db) 410 320 230 140 25 20 15 10 5 0 30 50 500 f lo = 2600mhz f lo = 2950mhz f lo = 2350mhz
typical operating characteristics (continued) ( typical application circuit , extended rf band (see table 2), v cc = +5.0v, lo is high-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 14 ______________________________________________________________________________________ conversion gain vs. rf frequency (lo > rf, extended rf band) max19997a toc39 rf frequency (mhz) conversion gain (db) 2200 2100 2000 1900 7 8 9 10 11 6 1800 2300 t c = -30 c t c = +25 c t c = +85 c conversion gain vs. rf frequency (lo > rf, extended rf band) max19997a toc40 rf frequency (mhz) conversion gain (db) 2200 2100 2000 1900 7 8 9 10 11 6 1800 2300 p lo = -3dbm, 0dbm, +3dbm conversion gain vs. rf frequency (lo > rf, extended rf band) max19997a toc41 rf frequency (mhz) conversion gain (db) 2200 2100 2000 1900 7 8 9 10 11 6 1800 2300 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency (lo > rf, extended rf band) max19997a toc42 rf frequency (mhz) input ip3 (dbm) 2200 2100 2000 1900 23 24 25 26 22 1800 2300 t c = -30 c p rf = -5dbm/tone t c = +25 c t c = +85 c input ip3 vs. rf frequency (lo > rf, extended rf band) max19997a toc43 rf frequency (mhz) input ip3 (dbm) 2200 2100 2000 1900 23 24 25 26 22 1800 2300 p rf = -5dbm/tone p lo = -3dbm, 0dbm, +3dbm input ip3 vs. rf frequency (lo > rf, extended rf band) max19997a toc44 rf frequency (mhz) input ip3 (dbm) 2200 2100 2000 1900 23 24 25 26 22 1800 2300 p rf = -5dbm/tone v cc = 4.75v v cc = 5.25v v cc = 5.0v noise figure vs. rf frequency (lo > rf, extended rf band) max19997a toc45 rf frequency (mhz) noise figure (db) 2200 2100 2000 1900 9 8 10 11 12 13 7 1800 2300 t c = -30 c t c = +25 c t c = +85 c noise figure vs. rf frequency (lo > rf, extended rf band) max19997a toc46 rf frequency (mhz) noise figure (db) 2200 2100 2000 1900 9 8 10 11 12 13 7 1800 2300 p lo = -3dbm, 0dbm, +3dbm noise figure vs. rf frequency (lo > rf, extended rf band) max19997a toc47 rf frequency (mhz) noise figure (db) 2200 2100 2000 1900 9 8 10 11 12 13 7 1800 2300 v cc = 4.75v, 5.0v, 5.25v
2lo - 2rf response vs. rf frequency (lo > rf, extended rf band) max19997a toc49 rf frequency (mhz) 2lo - 2rf response (dbc) 2200 2100 2000 1900 50 60 70 40 1800 2300 p rf = -5dbm p lo = -3dbm, 0dbm, +3dbm 3lo - 3rf response vs. rf frequency (lo > rf, extended rf band) max19997a toc51 rf frequency (mhz) 3lo - 3rf response (dbc) 2200 2100 2000 1900 65 85 75 95 55 1800 2300 p rf = -5dbm t c = -30 c t c = +25 c, +85 c typical operating characteristics (continued) ( typical application circuit , extended rf band (see table 2), v cc = +5.0v, lo is high-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 15 input p 1db vs. rf frequency (lo > rf, extended rf band) max19997a toc55 rf frequency (mhz) input p 1db (dbm) 2200 2100 2000 1900 10 11 12 13 9 1800 2300 p lo = -3dbm, 0dbm, +3dbm input p 1db vs. rf frequency (lo > rf, extended rf band) max19997a toc56 rf frequency (mhz) input p 1db (dbm) 2200 2100 2000 1900 10 11 12 13 9 1800 2300 v cc = 4.75v v cc = 5.0v v cc = 5.25v 2lo - 2rf response vs. rf frequency (lo > rf, extended rf band) max19997a toc48 rf frequency (mhz) 2lo - 2rf response (dbc) 2200 2100 2000 1900 50 60 70 40 1800 2300 t c = -30 c t c = +25 c t c = +85 c p rf = -5dbm 2lo - 2rf response vs. rf frequency (lo > rf, extended rf band) max19997a toc50 rf frequency (mhz) 2lo - 2rf response (dbc) 2200 2100 2000 1900 50 60 70 40 1800 2300 p rf = -5dbm v cc = 4.75v, 5.0v, 5.25v 3lo - 3rf response vs. rf frequency (lo > rf, extended rf band) max19997a toc52 rf frequency (mhz) 3lo - 3rf response (dbc) 2200 2100 2000 1900 65 85 75 95 55 1800 2300 p rf = -5dbm p lo = -3dbm, 0dbm, +3dbm 3lo - 3rf response vs. rf frequency (lo > rf, extended rf band) max19997a toc53 rf frequency (mhz) 3lo - 3rf response (dbc) 2200 2100 2000 1900 65 85 75 95 55 1800 2300 p rf = -5dbm v cc = 4.75v, 5.0v, 5.25v input p 1db vs. rf frequency (lo > rf, extended rf band) max19997a toc54 rf frequency (mhz) input p 1db (dbm) 2200 2100 2000 1900 10 11 12 13 9 1800 2300 t c = -30 c t c = +25 c t c = +85 c
rf-to-if isolation vs. rf frequency (lo > rf, extended rf band) max19997a toc65 rf-to-if isolation (db) 2200 2100 2000 1900 20 30 10 1800 2300 rf frequency (mhz) v cc = 4.75v, 5.0v, 5.25v typical operating characteristics (continued) ( typical application circuit , extended rf band (see table 2), v cc = +5.0v, lo is high-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 16 ______________________________________________________________________________________ rf-to-if isolation vs. rf frequency (lo > rf, extended rf band) max19997a toc63 rf-to-if isolation (db) 2200 2100 2000 1900 20 30 10 1800 2300 t c = -30 c t c = +25 c t c = +85 c rf frequency (mhz) lo leakage at if port vs. lo frequency (lo > rf, extended rf band) max19997a toc62 lo frequency (mhz) lo leakage at if port (dbm) 2550 2450 2350 2250 -20 -10 0 -30 2150 2650 v cc = 4.75v, 5.0v, 5.25v lo leakage at if port vs. lo frequenc y (lo > rf, extended rf band) max19997a toc61 lo frequency (mhz) lo leakage at if port (dbm) 2550 2450 2350 2250 -20 -10 0 -30 2150 2650 p lo = -3dbm, 0dbm, +3dbm channel isolation vs. rf frequency (lo > rf, extended rf band) max19997a toc58 rf frequency (mhz) channel isolation (db) 2200 2100 2000 1900 40 35 45 55 50 60 30 1800 2300 p lo = -3dbm, 0dbm, +3dbm channel isolation vs. rf frequency (lo > rf, extended rf band) max19997a toc59 rf frequency (mhz) channel isolation (db) 2200 2100 2000 1900 40 35 45 55 50 60 30 1800 2300 v cc = 4.75v, 5.0v, 5.25v channel isolation vs. rf frequency (lo > rf, extended rf band) max19997a toc57 rf frequency (mhz) channel isolation (db) 2200 2100 2000 1900 40 35 45 55 50 60 30 1800 2300 t c = -30 c, +25 c, +85 c lo leakage at if port vs. lo frequency (lo > rf, extended rf band) max19997a toc60 lo frequency (mhz) lo leakage at if port (dbm) 2550 2450 2350 2250 -20 -10 0 -30 2150 2650 t c = -30 c, +25 c, +85 c rf-to-if isolation vs. rf frequency (lo > rf, extended rf band) max19997a toc64 rf-to-if isolation (db) 2200 2100 2000 1900 20 30 10 1800 2300 rf frequency (mhz) p lo = -3dbm, 0dbm, +3dbm
typical operating characteristics (continued) ( typical application circuit , extended rf band (see table 2), v cc = +5.0v, lo is high-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 17 lo leakage at rf port vs. lo frequency (lo > rf, extended rf band) max19997a toc68 lo leakage at rf port (dbm) 3180 2960 2740 2520 -30 -40 -20 -10 -50 2300 3400 lo frequency (mhz) v cc = 4.75v, 5.0v, 5.25v lo leakage at rf port vs. lo frequenc y (lo > rf, extended rf band) max19997a toc66 lo leakage at rf port (dbm) 3180 2960 2740 2520 -30 -40 -20 -10 -50 2300 3400 lo frequency (mhz) t c = -30 c, +25 c, +85 c lo leakage at rf port vs. lo frequency (lo > rf, extended rf band) max19997a toc67 lo leakage at rf port (dbm) 3180 2960 2740 2520 -30 -40 -20 -10 -50 2300 3400 lo frequency (mhz) p lo = -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequenc y (lo > rf, extended rf band) max19997a toc69 2lo leakage at rf port (dbm) 3180 2960 2740 2520 -30 -40 -20 -10 -50 2300 3400 lo frequency (mhz) t c = -30 c, +25 c, +85 c 2lo leakage at rf port vs. lo frequenc y (lo > rf, extended rf band) max19997a toc70 2lo leakage at rf port (dbm) 3180 2960 2740 2520 -30 -40 -20 -10 -50 2300 3400 lo frequency (mhz) p lo = -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequenc y (lo > rf, extended rf band) max19997a toc71 2lo leakage at rf port (dbm) 3180 2960 2740 2520 -30 -40 -20 -10 -50 2300 3400 lo frequency (mhz) v cc = 4.75v, 5.0v, 5.25v
typical operating characteristics (continued) ( typical application circuit , extended rf band (see table 2), v cc = +5.0v, lo is high-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 18 ______________________________________________________________________________________ rf port return loss vs. rf frequency (lo > rf, extended rf band) max19997a toc72 rf port return loss (db) 2200 2100 2000 1900 15 10 25 20 5 0 30 1800 2300 rf frequency (mhz) p lo = -3dbm, 0dbm, +3dbm f if = 350mhz if port return loss vs. if frequency (lo > rf, extended rf band) max19997a toc73 if port return loss (db) 410 320 230 140 15 10 25 20 5 0 30 50 500 if frequency ( mhz ) f lo = 2600mhz v cc = 4.75v, 5.0v, 5.25v if port return loss vs. if frequency (lo > rf, extended rf band) max19997a toc74 if port return loss (db) 410 320 230 140 15 10 25 20 5 0 30 50 500 if frequency (mhz) f lo = 2600mhz f lo = 2950mhz f lo = 2350mhz lo port return loss vs. lo frequency (lo > rf, extended rf band) max19997a toc75 lo port return loss (db) 2900 3150 2650 2400 2150 10 20 15 5 0 25 1900 3400 lo frequency (mhz) p lo = -3dbm p lo = 0dbm p lo = +3dbm supply current vs. temperature (t c ) (lo > rf, extended rf band) max19997a toc76 supply current (ma) 45 65 25 5 -15 380 360 370 390 400 350 -35 85 temperature ( c) v cc = 4.75v v cc = 5.0v v cc = 5.25v
typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is low-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 19 input ip3 vs. rf frequency (rf > lo, standard rf band) max19997a toc82 input ip3 (dbm) 2800 2600 2400 23 24 25 26 22 2200 3000 rf frequency (mhz) p rf = -5dbm/tone v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency (rf > lo, standard rf band) max19997a toc81 input ip3 (dbm) 2800 2600 2400 23 24 25 26 22 2200 3000 rf frequency (mhz) p rf = -5dbm/tone p lo = -3dbm, 0dbm, +3dbm conversion gain vs. rf frequency (rf > lo, standard rf band) max19997a toc79 conversion gain (db) 2800 2600 2400 9 7 8 10 11 6 2200 3000 rf frequency (mhz) v cc = 4.75v, 5.0v, 5.25v conversion gain vs. rf frequency (rf > lo, standard rf band) max19997a toc77 conversion gain (db) 2800 2600 2400 9 7 8 10 11 6 2200 3000 rf frequency (mhz) t c = +85 c t c = +25 c t c = -30 c noise figure vs. rf frequency (rf > lo, standard rf band) max19997a toc83 noise figure (db) 2800 2600 2400 8 9 10 11 12 13 7 2200 3000 rf frequency (mhz) t c = +85 c t c = +25 c t c = -30 c noise figure vs. rf frequency (rf > lo, standard rf band) max19997a toc84 noise figure (db) 2800 2600 2400 8 9 10 11 12 13 7 2200 3000 rf frequency (mhz) p lo = -3dbm, 0dbm, +3dbm noise figure vs. rf frequency (rf > lo, standard rf band) max19997a toc85 noise figure (db) 2800 2600 2400 8 9 10 11 12 13 7 2200 3000 rf frequency (mhz) v cc = 4.75v, 5.0v, 5.25v conversion gain vs. rf frequency (rf > lo, standard rf band) max19997a toc78 conversion gain (db) 2800 2600 2400 9 7 8 10 11 6 2200 3000 rf frequency (mhz) p lo = -3dbm, 0dbm, +3dbm input ip3 vs. rf frequency (rf > lo, standard rf band) max19997a toc80 input ip3 (dbm) 2800 2600 2400 23 24 25 26 22 2200 3000 rf frequency (mhz) t c = +85 c t c = +25 c p rf = -5dbm/tone t c = -30 c
input p 1db vs. rf frequency (rf > lo, standard rf band) max19997a toc94 input p 1db (dbm) 2800 2600 2400 10 11 12 13 9 2200 3000 rf frequency (mhz) v cc = 4.75v v cc = 5.25v v cc = 5.0v typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is low-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 20 ______________________________________________________________________________________ 3rf-3lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc90 3rf-3lo response (dbc) 2800 2600 2400 65 75 85 95 55 2200 3000 rf frequency (mhz) p rf = -5dbm p lo = -3dbm, 0dbm, +3dbm 2rf-2lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc86 2rf-2lo response (dbc) 2800 2600 2400 60 70 80 50 2200 3000 rf frequency (mhz) t c = +85 c p rf = -5dbm t c = +25 c t c = -30 c 2rf-2lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc87 2rf-2lo response (dbc) 2800 2600 2400 60 70 80 50 2200 3000 rf frequency (mhz) p lo = 0dbm p rf = -5dbm p lo = -3dbm p lo = +3dbm 2rf-2lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc88 2rf-2lo response (dbc) 2800 2600 2400 60 70 80 50 2200 3000 rf frequency (mhz) p rf = -5dbm v cc = 4.75v, 5.0v, 5.25v 3rf-3lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc89 3rf-3lo response (dbc) 2800 2600 2400 65 85 75 95 55 2200 3000 rf frequency (mhz) p rf = -5dbm t c = -30 c, +25 c, +85 c 3rf-3lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc91 3rf-3lo response (dbc) 2800 2600 2400 65 75 85 95 55 2200 3000 rf frequency (mhz) p rf = -5dbm v cc = 4.75v, 5.0v, 5.25v input p 1db vs. rf frequency (rf > lo, standard rf band) max19997a toc92 input p 1db (dbm) 2800 2600 2400 10 11 12 13 9 2200 3000 rf frequency (mhz) t c = -30 c t c = +25 c t c = +85 c input p 1db vs. rf frequency (rf > lo, standard rf band) max19997a toc93 input p 1db (dbm) 2800 2600 2400 10 11 12 13 9 2200 3000 rf frequency (mhz) p lo = -3dbm, 0dbm, +3dbm
typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is low-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 21 lo leakage at if port vs. lo frequenc y (rf > lo, standard rf band) max19997a toc100 lo leakage at if port (dbm) 2450 2250 2050 -20 -10 0 -30 1850 2650 lo frequency (mhz) v cc = 4.75v, 5.0v, 5.25v channel isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc96 channel isolation (db) 2800 2600 2400 40 35 45 50 55 30 2200 3000 rf frequency (mhz) p lo = -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc101 rf-to-if isolation (db) 2800 2600 2400 20 30 10 2200 3000 rf frequency (mhz) t c = -30 c t c = +25 c t c = +85 c rf-to-if isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc102 rf-to-if isolation (db) 2800 2600 2400 20 30 10 2200 3000 rf frequency (mhz) p lo = -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc103 rf-to-if isolation (db) 2800 2600 2400 20 30 10 2200 3000 rf frequency (mhz) v cc = 4.75v, 5.0v, 5.25v channel isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc95 channel isolation (db) 2800 2600 2400 40 35 45 50 55 30 2200 3000 rf frequency (mhz) t c = -30 c, +25 c, +85 c channel isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc97 channel isolation (db) 2800 2600 2400 40 35 45 50 55 30 2200 3000 rf frequency (mhz) v cc = 4.75v, 5.0v, 5.25v lo leakage at if port vs. lo frequency (rf > lo, standard rf band) max19997a toc98 lo leakage at if port (dbm) 2450 2250 2050 -20 -10 0 -30 1850 2650 lo frequency (mhz) t c = -30 c, +25 c, +85 c lo leakage at if port vs. lo frequency (rf > lo, standard rf band) max19997a toc99 lo leakage at if port (dbm) 2450 2250 2050 -20 -10 0 -30 1850 2650 lo frequency (mhz) p lo = -3dbm, 0dbm, +3dbm
lo leakage at rf port vs. lo frequency (rf > lo, standard rf band) max19997a toc106 lo leakage at rf port (dbm) 2700 2500 2300 2100 -30 -40 -20 -10 -50 1900 2900 lo frequency (mhz) v cc = 4.75v, 5.0v, 5.25v typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is low-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 22 ______________________________________________________________________________________ lo leakage at rf port vs. lo frequency (rf > lo, standard rf band) max19997a toc104 lo leakage at rf port (dbm) 2700 2500 2300 2100 -30 -40 -20 -10 -50 1900 2900 lo frequency (mhz) t c = -30 c, +25 c, +85 c lo leakage at rf port vs. lo frequency (rf > lo, standard rf band) max19997a toc105 lo leakage at rf port (dbm) 2700 2500 2300 2100 -30 -40 -20 -10 -50 1900 2900 lo frequency (mhz) p lo = -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequenc y (rf > lo, standard rf band) max19997a toc107 2lo leakage at rf port (dbm) 2700 2500 2300 2100 -30 -40 -20 -10 -50 1900 2900 lo frequency (mhz) t c = -30 c, +25 c, +85 c 2lo leakage at rf port vs. lo frequenc y (rf > lo, standard rf band) max19997a toc108 2lo leakage at rf port (dbm) 2700 2500 2300 2100 -30 -40 -20 -10 -50 1900 2900 lo frequency (mhz) p lo = -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequenc y (rf > lo, standard rf band) max19997a toc109 2lo leakage at rf port (dbm) 2700 2500 2300 2100 -30 -40 -20 -10 -50 1900 2900 lo frequency (mhz) v cc = 4.75v, 5.0v, 5.25v
typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is low-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 23 supply current vs. temperature (t c ) (rf > lo, standard rf band) max19997a toc114 supply current (ma) 25 45 65 5 -15 370 360 390 380 400 350 -35 85 temperature ( c) v cc = 5.25v v cc = 5.0v v cc = 4.75v if port return loss vs. if frequency (rf > lo, standard rf band) max19997a toc112 if port return loss (db) 320 410 230 140 15 25 20 5 10 0 30 50 500 if frequency (mhz) f lo = 2250mhz f lo = 2650mhz f lo = 1850mhz lo port return loss vs. lo frequency (rf > lo, standard rf band) max19997a toc113 lo port return loss (db) 2650 2900 3150 2400 2150 15 20 5 10 0 25 1900 3400 lo frequency (mhz) p lo = +3dbm p lo = 0dbm p lo = -3dbm if port return loss vs. if frequency (rf > lo, standard rf band) max19997a toc111 if port return loss (db) 320 410 230 140 15 25 20 5 10 0 30 50 500 if frequency (mhz) f lo = 2250mhz v cc = 4.75v, 5.0v, 5.25v rf port return loss vs. rf frequency (rf > lo, standard rf band) max19997a toc110 rf port return loss (db) 2800 2600 2400 15 25 20 5 10 0 30 2200 3000 rf frequency (mhz) p lo = -3dbm, 0dbm, +3dbm f if = 350mhz
typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is low-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 24 ______________________________________________________________________________________ noise figure vs. rf frequency (rf > lo, standard rf band) max19997a toc123 rf frequency (mhz) noise figure (db) 2800 2600 2400 10 11 12 13 7 8 9 2200 3000 v cc = 3.0v, 3.3v, 3.6v noise figure vs. rf frequency (rf > lo, standard rf band) max19997a toc122 rf frequency (mhz) noise figure (db) 2800 2600 2400 10 11 12 13 7 8 9 2200 3000 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm noise figure vs. rf frequency (rf > lo, standard rf band) max19997a toc121 rf frequency (mhz) noise figure (db) 2800 2600 2400 10 11 12 13 7 8 9 2200 3000 v cc = 3.3v t c = -30 c t c = +25 c t c = +85 c conversion gain vs. rf frequency (rf > lo, standard rf band) max19997a toc117 rf frequency (mhz) conversion gain (db) 2800 2600 2400 7 8 9 10 11 5 6 2200 3000 v cc = 3.0v, 3.3v, 3.6v input ip3 vs. rf frequency (rf > lo, standard rf band) max19997a toc118 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 19 20 21 22 17 18 2200 3000 p rf = -5dbm/tone t c = -30 c v cc = 3.3v t c = +25 c t c = +85 c input ip3 vs. rf frequency (rf > lo, standard rf band) max19997a toc119 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 19 20 21 22 17 18 2200 3000 p rf = -5dbm/tone v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm input ip3 vs. rf frequency (rf > lo, standard rf band) max19997a toc120 rf frequency (mhz) input ip3 (dbm) 2800 2600 2400 19 20 21 22 17 18 2200 3000 p rf = -5dbm/tone v cc = 3.0v, 3.3v, 3.6v conversion gain vs. rf frequency (rf > lo, standard rf band) max19997a toc115 rf frequency (mhz) conversion gain (db) 2800 2600 2400 7 8 9 10 11 5 6 2200 3000 t c = -30 c v cc = 3.3v t c = +25 c t c = +85 c conversion gain vs. rf frequency (rf > lo, standard rf band) max19997a toc116 rf frequency (mhz) conversion gain (db) 2800 2600 2400 7 8 9 10 11 5 6 2200 3000 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm
typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is low-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 25 input p 1db vs. rf frequency (rf > lo, standard rf band) max19997a toc132 rf frequency (mhz) input p 1db (dbm) 2800 2600 2400 7 9 8 10 5 6 2200 3000 v cc = 3.3v v cc = 3.6v v cc = 3.0v 3rf-3lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc127 rf frequency (mhz) 3rf-3lo response (dbc) 2800 2600 2400 65 85 75 95 45 55 2200 3000 p rf = -5dbm v cc = 3.3v t c = -30 c, +25 c, +85 c 3rf-3lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc128 rf frequency (mhz) 3rf-3lo response (dbc) 2800 2600 2400 65 85 75 95 45 55 2200 3000 p rf = -5dbm v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm 3rf-3lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc129 rf frequency (mhz) 3rf-3lo response (dbc) 2800 2600 2400 65 85 75 95 45 55 2200 3000 p rf = -5dbm v cc = 3.0v, 3.3v, 3.6v input p 1db vs. rf frequency (rf > lo, standard rf band) max19997a toc130 rf frequency (mhz) input p 1db (dbm) 2800 2600 2400 7 9 8 10 5 6 2200 3000 v cc = 3.3v t c = -30 c t c = +25 c t c = +85 c input p 1db vs. rf frequency (rf > lo, standard rf band) max19997a toc131 rf frequency (mhz) input p 1db (dbm) 2800 2600 2400 7 9 8 10 5 6 2200 3000 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm 2rf-2lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc126 rf frequency (mhz) 2rf-2lo response (dbc) 2800 2600 2400 70 80 90 50 60 2200 3000 p rf = -5dbm v cc = 3.6v v cc = 3.0v v cc = 3.3v 2rf-2lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc124 rf frequency (mhz) 2rf-2lo response (dbc) 2800 2600 2400 70 80 90 50 60 2200 3000 p rf = -5dbm v cc = 3.3v t c = -30 c t c = +25 c t c = +85 c 2rf-2lo response vs. rf frequency (rf > lo, standard rf band) max19997a toc125 rf frequency (mhz) 2rf-2lo response (dbc) 2800 2600 2400 70 80 90 50 60 2200 3000 p rf = -5dbm p lo = +3dbm p lo = -3dbm p lo = 0dbm v cc = 3.3v
typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is low-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 26 ______________________________________________________________________________________ lo leakage at if port vs. lo frequenc y (rf > lo, standard rf band) max19997a toc136 lo frequency (mhz) lo leakage at if port (dbm) 2450 2250 2050 -20 -10 0 -30 1850 2650 t c = -30 c t c = +25 c t c = +85 c v cc = 3.3v lo leakage at if port vs. lo frequenc y (rf > lo, standard rf band) max19997a toc137 lo frequency (mhz) lo leakage at if port (dbm) 2450 2250 2050 -20 -10 0 -30 1850 2650 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm lo leakage at if port vs. lo frequency (rf > lo, standard rf band) max19997a toc138 lo frequency (mhz) lo leakage at if port (dbm) 2450 2250 2050 -20 -10 0 -30 1850 2650 v cc = 3.0v, 3.3v, 3.6v channel isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc133 rf frequency (mhz) channel isolation (db) 2800 2600 2400 40 50 45 55 30 35 2200 3000 v cc = 3.3v t c = -30 c, +25 c, +85 c channel isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc134 rf frequency (mhz) channel isolation (db) 2800 2600 2400 40 50 45 55 30 35 2200 3000 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm channel isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc135 rf frequency (mhz) channel isolation (db) 2800 2600 2400 40 50 45 55 30 35 2200 3000 v cc = 3.0v, 3.3v, 3.6v rf-to-if isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc139 rf frequency (mhz) rf-to-if isolation (db) 2800 2600 2400 15 25 20 30 10 2200 3000 v cc = 3.3v t c = -30 c t c = +25 c t c = +85 c rf-to-if isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc140 rf frequency (mhz) rf-to-if isolation (db) 2800 2600 2400 15 25 20 30 10 2200 3000 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency (rf > lo, standard rf band) max19997a toc141 rf frequency (mhz) rf-to-if isolation (db) 2800 2600 2400 15 25 20 30 10 2200 3000 v cc = 3.0v, 3.3v, 3.6v
lo leakage at rf port vs. lo frequency (rf > lo, standard rf band) max19997a toc143 lo frequency (mhz) lo leakage at rf port (dbm) 2500 2700 2300 2100 -40 -20 -30 -10 -50 1900 2900 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is low-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 27 2lo leakage at rf port vs. lo frequenc y (rf > lo, standard rf band) max19997a toc146 lo frequency (mhz) 2lo leakage at rf port (dbm) 2500 2700 2300 2100 -40 -20 -30 -10 -50 1900 2900 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v 2lo leakage at rf port vs. lo frequency (rf > lo, standard rf band) max19997a toc145 lo frequency (mhz) 2lo leakage at rf port (dbm) 2500 2700 2300 2100 -40 -20 -30 -10 -50 1900 2900 t c = -30 c, +25 c, +85 c v cc = 3.3v 2lo leakage at rf port vs. lo frequenc y (rf > lo, standard rf band) max19997a toc147 lo frequency (mhz) 2lo leakage at rf port (dbm) 2500 2700 2300 2100 -40 -20 -30 -10 -50 1900 2900 v cc = 3.0v, 3.3v, 3.6v lo leakage at rf port vs. lo frequency (rf > lo, standard rf band) max19997a toc142 lo frequency (mhz) lo leakage at rf port (dbm) 2500 2700 2300 2100 -40 -20 -30 -10 -50 1900 2900 t c = -30 c, +25 c, +85 c v cc = 3.3v lo leakage at rf port vs. lo frequency (rf > lo, standard rf band) max19997a toc144 lo frequency (mhz) lo leakage at rf port (dbm) 2500 2700 2300 2100 -40 -20 -30 -10 -50 1900 2900 v cc = 3.0v, 3.3v, 3.6v
typical operating characteristics (continued) ( typical application circuit , standard rf band (see table 1), v cc = +5.0v, lo is low-side injected for a 350mhz if, p lo = 0dbm, p rf = -5dbm, t c = +25?, unless otherwise noted.) max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 28 ______________________________________________________________________________________ rf port return loss vs. rf frequency (rf > lo, standard rf band) max19997a toc148 rf frequency (mhz) rf port return loss (db) 2600 2800 2400 20 25 5 10 15 0 30 2200 3000 v cc = 3.3v f if = 350mhz p lo = -3dbm, 0dbm, +3dbm if port return loss vs. if frequency (rf > lo, standard rf band) max19997a toc149 if frequency (mhz) if port return loss (db) 230 320 410 140 30 10 20 0 40 50 500 f lo = 2250mhz v cc = 3.0v, 3.3v, 3.6v if port return loss vs. if frequency (rf > lo, standard rf band) max19997a toc150 if frequency (mhz) if port return loss (db) 230 320 410 140 30 10 20 0 40 50 500 f lo = 2250mhz f lo = 1850mhz f lo = 2650mhz v cc = 3.3v lo port return loss vs. lo frequency (rf > lo, standard rf band) max19997a toc151 lo frequency (mhz) lo port return loss (db) 2400 2650 2900 3150 2150 20 15 5 10 0 25 1900 3400 p lo = 0dbm p lo = -3dbm p lo = +3dbm v cc = 3.3v supply current vs. temperature (t c ) (rf > lo, standard rf band) max19997a toc152 temperature ( c) supply current (ma) 65 45 25 5 -15 260 270 280 290 300 250 -35 85 v cc = 3.6v v cc = 3.3v v cc = 3.0v
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 29 detailed description the max19997a dual, downconversion mixer provides high linearity and low noise figure for a multitude of 1800mhz to 2900mhz base-station applications. the device fully supports both low-side and high-side lo injection architectures for the 2300mhz to 2900mhz wimax, lte, wcs, and mmds bands. wcdma, cdma2000, and pcs1900 applications utilizing high- side lo injection architectures are also supported by adding one additional tuning element (a shunt inductor) on each rf port. the max19997a operates over an lo range of 1950mhz to 3400mhz and an if range of 50mhz to 550mhz. integrated baluns and matching circuitry allow 50 single-ended interfaces to the rf and lo ports. the integrated lo buffer provides a high drive level to the mixer core, reducing the lo drive required at the max19997a? input to a range of -3dbm to +3dbm. the if port incorporates a differential output, which is ideal for providing enhanced 2rf - 2lo (low-side injection) and 2lo - 2rf (high-side injection) performance. rf input and balun the max19997a? two rf inputs (rfmain and rfdiv) provide a 50 match when combined with a series dc- blocking capacitor. this dc-blocking capacitor is required as the input is internally dc shorted to ground through each channel? on-chip balun. when using a 22pf dc-blocking capacitor, the rf port input return loss is typically 15db over the rf frequency range of 2600mhz to 2900mhz. pin description pin name function 1 rfmain main channel rf input. internally matched to 50 . requires an input dc-blocking capacitor. 2, 5, 6, 8, 12, 15, 18, 23, 28, 31, 34 gnd ground. not internally connected. ground these pins or leave unconnected. 3, 7, 20, 22, 24?7 gnd ground. internally connected to the exposed pad. connect all ground pins and the exposed pad (ep) together. 4, 10, 16, 21, 30, 36 v cc power supply. connect bypass capacitors as close as possible to the pin (see the typical application circuit ). 9 rfdiv diversity channel rf input. internal matched to 50 . requires a dc-blocking capacitor. 11 ifd_set if diversity amplifier bias control. connect a resistor from this pin to ground to set the bias current for the diversity if amplifier. 13, 14 ifd+, ifd- diversity mixer differential if output. connect pullup inductors from each of these pins to v cc (see the typical application circuit ). 17 lo_adj_d lo diversity amplifier bias control. connect a resistor from this pin to ground to set the bias current for the diversity lo amplifier. 19 lo local oscillator input. this input is internally matched to 50 . requires an input dc- blocking capacitor. 29 lo_adj_m lo main amplifier bias control. connect a resistor from this pin to ground to set the bias current for the main lo amplifier. 32, 33 ifm-, ifm+ main mixer differential if output. connect pullup inductors from each of these pins to v cc (see the typical application circuit ). 35 ifm_set if main amplifier bias control. connect a resistor from this pin to ground to set the bias current for the main if amplifier. ?p e xp osed p ad . inter nal l y connected to gn d . s ol d er thi s exp osed p ad to a p c b p ad that uses m ul ti p l e g r ound vi as to p r ovi d e heat tr ansfer out of the d evi ce i nto the p c b g r ound p l anes. these m ul ti p l e g r ound vi as ar e al so r eq ui r ed to achi eve the noted rf p er for m ance.
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 30 ______________________________________________________________________________________ the max19997a? rf range can be further extended down to 1800mhz by adding one additional tuning ele- ment on each rf port. for 1950mhz rf applications, connect a 12nh shunt inductor from pins 1 and 9 to ground. also, change the value of the dc-blocking capacitors (c1 and c8) from 22pf to 1pf. see the typical application circuit for details. lo input, buffer, and balun a two-stage internal lo buffer allows a wide input power range for the lo drive. all guaranteed specifica- tions are for an lo signal power from -3dbm to +3dbm. the on-chip low-loss balun, along with an lo buffer, drives the double-balanced mixer. all interfacing and matching components from the lo input to the if out- puts are integrated on-chip. high-linearity mixer the core of the max19997a is a pair of double- balanced, high-performance passive mixers. exceptional linearity is provided by the large lo swing from the on-chip lo buffer. when combined with the integrated if amplifiers, the cascaded iip3, 2rf-2lo rejection, and nf performance are typically +24dbm iip3, -67dbc, and 10.3db, respectively for low-side lo injection architectures covering the 2300mhz to 2900mhz band. cascaded performance levels are comparable for high-side lo injection architectures; iip3, 2lo - 2rf rejection, and nf levels are typically rated at +24dbm iip3, -73dbc, and 10.4db, respective- ly over the same 2300mhz to 2900mhz band. differential if output amplifier the max19997a mixers have an if frequency range of 50mhz to 550mhz. the differential, open-collector if output ports require external pullup inductors to v cc . these pullup inductors are also used to resonate out the parasitic shunt capacitance of the ic, pcb components, and pcb to provide an optimized if match at the fre- quency of interest. note that differential if outputs are ideal for providing enhanced 2rf - 2lo and 2lo - 2rf rejection performance. single-ended if applications require a 4:1 balun to transform the 200 differential output impedance to a 50 single-ended output. after the balun, voltage standing-wave ratio (vswr) is typi- cally 1.2:1. applications information input and output matching the rf and lo inputs are internally matched to 50 . no matching components are required for rf frequencies ranging from 2400mhz to 2900mhz. rf and lo inputs require only dc-blocking capacitors for interfacing. if desired, the rf band can be extended down to 1800mhz by adding two external matching compo- nents on each rf port. see the typical application circuit and table 2 for details. the if output impedance is 200 (differential). for evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50 single- ended output (see the typical application circuit ). reduced-power mode each channel of the max19997a has two pins (lo_adj_ _, if_ _set) that allow external resistors to set the internal bias currents. nominal values for these resistors are shown in tables 1 and 2. larger-value resistors can be used to reduce power dissipation at the expense of some performance loss. if ?% resistors are not readily available, ?% resistors may be substituted. significant reductions in power consumption can be realized by operating the mixer with an optional supply voltage of +3.3v. doing so reduces the overall power consumption by up to 53%. see the +3.3v supply, low-side lo injection ac electrical characteristics table and the relevant +3.3v curves in the typical operating characteristics section to evaluate the power vs. performance tradeoffs. layout considerations a properly designed pcb is an essential part of any rf/microwave circuit. keep rf signal lines as short as possible to reduce losses, radiation, and inductance. for the best performance, route the ground pin traces directly to the exposed pad under the package. the pcb exposed pad must be connected to the ground plane of the pcb. it is suggested that multiple vias be used to connect this pad to the lower-level ground planes. this method provides a good rf/ther- mal-conduction path for the device. solder the exposed pad on the bottom of the device package to the pcb. the max19997a evaluation kit can be used as a refer- ence for board layout. gerber files are available upon request at www.maxim-ic.com .
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 31 designation qty description component supplier c1, c8 2 22pf microwave capacitors (0402) murata electronics north america, inc. c14 1 1.5pf microwave capacitor (0402) murata electronics north america, inc. c4, c9, c13, c15, c17, c18 6 0.01? microwave capacitors (0402) murata electronics north america, inc. c10, c11, c12, c19, c20, c21 6 82pf microwave capacitors (0603) murata electronics north america, inc. l1, l2, l3, l4 4 120nh wire-wound high-q inductors* (0805) coilcraft, inc. l7, l8 0 not used 750 ?% resistors (0402). use for v cc = +5.0v applications. larger values can be used to reduce power at the expense of some performance loss. see the typical operating characteristics section. digi-key corp. r1, r4 2 1.1k ?% resistors (0402). use for v cc = +3.3v applications. larger values can be used to reduce power at the expense of some performance loss. see the typical operating characteristics section. digi-key corp. 698 ?% resistors (0402). use for v cc = +5.0v applications. larger values can be used to reduce power at the expense of some performance loss. see the typical operating characteristics section. digi-key corp. r2, r5 2 845 ?% resistors (0402). use for v cc = +3.3v applications. larger values can be used to reduce power at the expense of some performance loss. see the typical operating characteristics section. digi-key corp. r3, r6 2 0 resistors (1206). these resistors can be increased in value to reduce power dissipation in the device, but reduces the compression point. full p 1db performance achieved using 0 . digi-key corp. t1, t2 2 4:1 if baluns (tc4-1w-17+) mini-circuits u1 1 max19997a ic (36 tqfn-ep) maxim integrated products, inc. table 1. standard rf band application circuit component values (optimized for frequencies ranging from 2400mhz to 2900mhz) * use 390nh (0805) inductors for an if frequency of 200mhz. contact the factory for details. power-supply bypassing proper voltage supply bypassing is essential for high- frequency circuit stability. bypass each v cc pin with the capacitors shown in the typical application circuit . exposed pad rf/thermal considerations the exposed pad (ep) of the max19997a? 36-pin thin qfn-ep package provides a low thermal-resistance path to the die. it is important that the pcb on which the max19997a is mounted be designed to conduct heat from the ep. in addition, provide the ep with a low- inductance path to electrical ground. the ep must be soldered to a ground plane on the pcb, either directly or through an array of plated via holes.
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 32 ______________________________________________________________________________________ designation qty description component supplier c1, c8 2 1pf microwave capacitors (0402) murata electronics north america, inc. c14 1 1.5pf microwave capacitor (0402) murata electronics north america, inc. c4, c9, c13, c15, c17, c18 6 0.01? microwave capacitors (0402) murata electronics north america, inc. c10, c11, c12, c19, c20, c21 6 82pf microwave capacitors (0603) murata electronics north america, inc. l1, l2, l3, l4 4 120nh wire-wound high-q inductors* (0805) coilcraft, inc. l7, l8 2 12nh i nd uctor ( 0402) . u se to i m p r ove rf m atch fr om 1800m h z to 2400m h z. c onnect l7 and l8 fr om p i ns 1 and 9, r esp ecti vel y, to g r ound . coilcraft, inc. r1, r4 2 750 ?% resistors (0402). use for v cc = +5.0v applications. larger values can be used to reduce power at the expense of some performance loss. see the typical operating characteristics section. digi-key corp. r2, r5 2 698 ?% resistors (0402). use for v cc = +5.0v applications. larger values can be used to reduce power at the expense of some performance loss. see the typical operating characteristics section. digi-key corp. r3, r6 2 0 resistors (1206). these resistors can be increased in value to reduce power dissipation in the device, but reduces the compression point. full p 1db performance achieved using 0 . digi-key corp. t1, t2 2 4:1 if balun (tc4-1w-17+) mini-circuits u1 1 max19997a ic (36 tqfn-ep) maxim integrated products, inc. table 2. extended rf band application circuit component values (optimized for 1950mhz operation) * use 390nh (0805) inductors for an if frequency of 200mhz. contact the factory for details.
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer ______________________________________________________________________________________ 33 typical application circuit rf main input rf div input c1 c8 c9 c13 c17 c18 r1 v cc l2* l1* r3 c20 c19 if main output t1 r2 c14 lo 4:1 4:1 v cc v cc v cc v cc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31 32 33 34 35 36 19 20 21 22 23 24 25 26 27 gnd v cc gnd gnd gnd gnd gnd gnd rfmain rfdiv exposed pad ifd_set gnd gnd lo_adj_d gnd v cc v cc gnd lo_adj_m v cc gnd gnd ifm_set ifd+ ifd- v cc ifm+ ifm- lo *use 390nh (0805) inductors for an if frequency of 200mhz. contact factory for details. **connect inductors to improve rf match from 1800mhz to 2400mhz. see table 2 for details. gnd gnd gnd gnd gnd v cc max19997a c4 v cc c21 c15 v cc r5 r4 v cc l3* l4* r6 c10 c11 t2 if div output c12 + l7** l8** gnd
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer 34 ______________________________________________________________________________________ 1 + 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31 32 33 34 35 36 19 20 21 22 23 24 25 26 27 gnd v cc gnd gnd gnd gnd gnd gnd rfmain rfdiv exposed pad ifd_set gnd gnd lo_adj_d gnd v cc v cc gnd lo_adj_m v cc gnd gnd ifm_set ifd+ ifd- v cc ifm+ ifm- lo gnd gnd gnd gnd gnd gnd v cc max19997a exposed pad on the bottom of the package. 6mm x 6mm thin qfn (exposed pad) top view chip information process: sige bicmos pin configuration/ functional block diagram package information for the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages . note that a ?? ?? or ??in the package code indicates rohs status only. package drawings may show a different suffix character, but the drawing pertains to the package regardless of rohs status. package type package code outline no. land pattern no. 36 thin qfn-ep t3666+2 21-0141 90-0049
max19997a dual, sige high-linearity, 1800mhz to 2900mhz downconversion mixer with lo buffer maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 ____________________ 35 2011 maxim integrated products maxim is a registered trademark of maxim integrated products, inc. revision history revision number revision date description pages changed 0 10/08 initial release 1 9/10 minor style edits 2, 3, 4, 10, 15, 29, 30, 34 2 2/11 increased if frequency range from 50mhz to 550mhz 1, 3, 29, 30


▲Up To Search▲   

 
Price & Availability of MAX19997A11

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X